Poincaré Inequalities, Embeddings, and Wild Groups

نویسندگان

  • ASSAF NAOR
  • LIOR SILBERMAN
چکیده

We present geometric conditions on a metric space (Y, dY ) ensuring that almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov-Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s “wild groups”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coarse embeddings into a Hilbert space, Haagerup Property and Poincaré inequalities

We prove that a metric space does not coarsely embed into a Hilbert space if and only if it satisfies a sequence of Poincaré inequalities, which can be formulated in terms of (generalized) expanders. We also give quantitative statements, relative to the compression. In the equivariant context, our result says that a group does not have the Haagerup property if and only if it has relative proper...

متن کامل

On weighted isoperimetric and Poincaré-type inequalities

Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).

متن کامل

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Most smoothing procedures are via averaging. Pseudo-Poincaré inequalities give a basic L-norm control of such smoothing procedures in terms of the gradient of the function involved. When available, pseudo-Poincaré inequalities are an efficient way to prove Sobolev type inequalities. We review this technique and its applications in various geometric setups.

متن کامل

Some Discrete Poincaré-type Inequalities

Some discrete analogue of Poincaré-type integral inequalities involving many functions of many independent variables are established. These in turn can serve as generators of further interesting discrete inequalities. 2000 Mathematics Subject Classification. Primary 39A10, 39A12, 39B72.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004